Math 2110: Calculus III

MTWR 12:45-2:05 in Dunn Hall 123

Instructor: Conner Griffin Dunn Hall 143 cgrffn11@memphis.edu

Office Hours: 2:05-3:30 Monday and Wednesday or by appointment. Office hours over zoom are also possible if you prefer.

Course Content: Major topics include three dimensional Euclidean space and it's algebra; curves and surfaces in three dimensional space; the calculus of vector valued functions; the calculus of multivariate real valued functions; arc-length and surface area; optimization problems and Lagrange multipliers; change of variables; vector fields; line and surface integrals; generalizations of the fundamental theorem of calculus.

Prerequisite: Math 1920 with a grade of C or better

Course Objectives: The main objective of this course will be to develop a mastery of the basics of multivariate calculus including practical problems inspired by physics and other subjects. There will also be a focus on improving students' mathematical reading comprehension, logical reasoning, and analytical writing.

Course Materials: Textbook, Calculus, Early Transcendentals Volume I, 8th ed. by James Stewart

Disabilities: Any student who anticipates physical or academic barriers based on the impact of a disability should contact <u>Disability Resources for Students (DRS)</u> at 110 Wilder Tower, 901.678.2880 at the earliest opportunity. DRS coordinates access and accommodations for students with disabilities. You must give your instructor a copy of any accommodation memos provided by the DRS within the first week of class.

Attendance: Attendance is important and is a factor in your participation grade. Every student is required to be in class, on time, and stay for the entire class period for each class session. If you miss class you are responsible for finding out what topics were covered.

Grading Policy: Final grades will be on a 10 point scale: 90-100%, A; 80-89%, B; 70-79%, C; 60-69%, D; and anything lower than 60% is an F. The various graded work will be weighted as follows:

10% Participation
25% Homework
15% Written Project (1)
30% Exams (2)
20% Final Exam (comprehensive)

Homework: I will be writing the homework myself meaning that there will be NO online homework. So, don't purchase WebAssign. Homework will be assigned for each section of the text and must be finished before the due date for you to receive credit. As long as we are on schedule, there will be some dedicated class time to working on homework together. All homework will be due in class a week after it is assigned.

Quizzes: For each section there will be a 2 question reading quiz prior to the first lecture of that section. You will have 15 minutes to complete it. The quiz will be based on the course notes which I will distribute at least a week in advance. The questions will be short response (2-3 sentences). Completion of the quiz counts towards your participation grade.

Exams: Each exam is worth 100 pts. The use of a calculator is not permitted for exams. For each exam (except the final) there will be a take home bonus worth 10pts. The bonus will be 5 questions that are 2 pts each. The bonus will be graded based on completion rather than correctness.

Written Project: This project will have a substantial written component. You will also be required to produce some computer calculations and graphics using MatLab or Mathematica, which are available to you through the university. These projects will be quite serious and are intended to prepare students for advanced math classes or careers which rely on mathematical communication. I am available to help with MatLab or Mathematica. The information for the project will be distributed the day of the first exam and will be due two weeks after that.

Make-ups for Exams: If you must miss a test let me know and we can schedule a make-up exam. In extraordinary cases we may agree to re-weight the other work if a make-up exam is not possible.

Final Exam: The comprehensive final is mandatory. You will be allowed a cheat sheet no larger than one side of an 8.5"x11" (standard printer paper size) piece of paper. The use of a calculator is not permitted. There will be no bonus problems for the final exam.

Important dates:

- First Day of class: May 31, 2022
- Break: July 4, 2022
- Last Day of Class: August 4, 2022
- Final Exam: August 5, 2022

Course Schedule: All dates are subject to change. If we deviate from it at all I will let you know.

Monday	Tuesday	Wednesday	Thursday
	May 31	June 1	June 2
	Three dimensional Euclidean space	The cross product	HW 1 assigned
	The dot product		Vector-valued functions
			Curves and surfaces
June 6	June 7	June 8	June 9
Derivatives and integrals of vector-valued functions	Arc-length and curvature	HW1 group work	HW 1 due HW 2 assigned
			Multivariate real-valued functions
June 13	June 14	June 15	June 16
Partial derivatives	Tangent planes and linear approximation	HW2 group work The chain rule	HW 2 due HW 3 assigned
			Directional derivatives
			The gradient vector
June 20	June 21	June 22	June 23
Maximum and Minimum values	Lagrange Multipliers	HW3 group work	HW 3 due HW 4 assigned
			Exam 1 review
June 27	June 28	June 29	June 30
Exam 1	Double integrals over rectangles (introduction to	HW 4 group work	HW 4 due HW 5 assigned
Written Project assigned	iterated integrals)	Iterated integrals	Double integrals over general regions and in polar coordinates
July 4	July 5	July 6	July 7
No class	Applications of double integrals	HW 5 group work	HW 5 due HW 6 assigned
		Juilace alea	Triple integrals
July 11	July 12	July 13	July 14
Written Project due	Triple integrals in spherical coordinates	HW 6 group work	HW 6 due HW 7 assigned
Triple integrals in cylindrical coordinates		Change of variables in multiple integrals	Exam 2 review

July 19	July 20	July 21
Vectorfields	HW 7 group work	HW 7 due HW 8 assigned
Line integrals	The Fundamental Theorem of Line Integrals	Green's Theorem
July 26	July 27	July 28
Parametric surfaces and their area	HW 8 group work	HW 8 due
		Surface integrals
August 2	August 3	August 4
The Divergence Theorem	Final Exam review	Final exam review
	Vector fields Line integrals July 26 Parametric surfaces and their area August 2	Vector fieldsHW 7 group workLine integralsThe Fundamental Theorem of Line IntegralsJuly 26July 27Parametric surfaces and their areaHW 8 group workAugust 2August 3