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Chapter 1

Euclidean Space

1.1 The Cartesian Product

Euclidean space is very important to the study of multivariable calculus. Un-
derstanding the algebra and geometry of the space and of the various maps we
have between euclidean spaces of different dimensions is the key to unlocking
the material in these notes. To understand euclidean space we first need to
make some notes about the cartesian product. The cartesian product should be
something you are fairly familiar with already, even if you do not know it by
name. It is the product which gives us the euclidean plane, that is the set of
all ordered pairs of real numbers. This is where we visualize the graphs of the
functions you know and love from single variable calculus. More generally when
we say cartesian product this is what we mean:

Definition 1.1.1 (Cartesian Product). The cartesian product of two sets, A
and B, is the set of all ordered pairs with elements (a, b) where a is in A and b
is in B. We denote the cartesian product as A×B.a

aNote that A×B = B ×A only when A = B.

This definition is for sets in general. In our case, the graphs of our single
variable functions are in the euclidean plane, R×R = R2.1 Points on our graph
look like (x, f (x)) which is indeed an ordered pair of real numbers. In fact, for
a given function f, which has domain some set A and range some set B, the
graph of f is a function from A to A×B.

1We use R to denote the real line.
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Figure 1.1: Domain, range and graph of f

Example 1.1.1. Consider the function f (x) = x2. The domain of the function
is R, the range is [0,∞) , but the graph of f, which is all of the points (x, f (x)) ,
is contained in R2.

It is important to note that the cartesian product is in some sense associative.
By this we mean that

(A×B)× C = A× (B × C)

where A,B, and C are non empty sets and the parentheses indicate that that is
the product you take first. So, elements of (A×B)×C look like ((a, b) , c) and
elements of A× (B × C) look like (a, (b, c)) . We equate these two products by
the following identification ((x, y) , z) = (x, (y, z)) . This is not equality in the
sense of two real numbers being equal. This is an invertible assignment that
preserves the algebraic structure of (A×B) × C and A × (B × C). This is a
type of equality in its own way. Associativity is an important quality of our
operation because it allows us to take multiple products without specifying the
order. As such, we may express both (A×B)×C and A×(B × C) as A×B×C.

Definition 1.1.2 (Multiple Cartesian Products). The caresian product of n
setsa, A1, A2, . . . An, is the set of all ordered n-tuples (a1, a2, . . . , an) , where a1
is an element of A1, a2 is an element of A2 et cetera. We denote the cartesian
product in three main ways,

∏n
i=1 Ai = ×n

i=1Ai = A1 ×A2 × · · · ×An.
b

aHere, n is a positive integer and represents the total number of sets of which we will be
taking the cartesian product

bThink of the first two as mirroring summation notation as in
∑n

i=1 an.

Definition 1.1.3 (Euclidean Space). The n-dimensional euclidean space is the
multiple cartesian product of n copies of the real line, ×n

i=1R. We denote it as
Rn.
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Figure 1.2: A point, (a, b, c), in R3

For multivariable calculus, euclidean space is the place where everything
lives. It will contain the domain, range and graphs of the functions we will
be considering. The most important of these to familiarize yourself with is R3

which we may visualize as in Figure 1.2.

Example 1.1.2. Consider the function f (x) =
(
x, x2

)
. The domain of f is

R, the range is R × [0,∞) , and the graph of the function is all of the points(
x,

(
x, x2

))
. We equate this point, which is in R× (R× [0,∞)) , with the point(

x, x, x2
)
in R× R× [0,∞) .

Example 1.1.3. Another familiar example of a function from R to R2 is the
unite circle: f (θ) = (cos (θ) , sin (θ)) .

1.2 Algebra and Geometry of Euclidean Space

It is because of the algebra of the space that we refer to elements of Rn as
vectors.

1.2.1 Vector Addition and Scalar Multiplication in Rn.

(a, b) + (x, y)

1.2.2 The Dot Product

1.2.3 Algebra and Geometry of R3
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2.1 Limits and Continuity

2.2 Differentiation
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