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Topological Groups

A topological group is a group G with a topology on G so that the group
operations are continuous. Specifically, (x, y) → xy is continuous from G×G to
G and x → x−1 is continuous from G → G.

The topology of G is invariant under translation and inversion meaning that if U
is open then so is xU, Ux, and U−1 = {x−1 : x ∈ U}.
If H is a subgroup of G then so is H.

A topological space, X, is locally compact if every point x ∈ X has a
neighborhood, U, so that x ∈ U ⊂ K for some compact K.

If H is a subgroup of topological group G, q : G → G/H the canonical quotient
map. U in G/H is open if and only if q−1(U) open in G.

If a topological group, G, is T1 then G is Hausdorff. If G is not T1 then {1} is a
normal subgroup of G and G/{1} is Hausdorff.
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Haar Measure

Definition

Let G be a locally compact group. A left (respectively right) Haar measure on G is a
Borel measure, m, with the following properties:

1 m (gB) = m (B) (respectively m (Bg) = m (B)) for all Borel sets, B, and all
g ∈ G

2 m (K) < ∞ for all compact sets K ⊂ G.

3 m (U) > 0 for all open U ⊆ G.

If G is a locally compact topological group then there is a left and right Haar
measure each of which is unique up to a scalar multiple.

For a discrete group, Haar measure is simply counting measure.
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Unitary Representation

Definition

Let G be a locally compact group. A unitary representation of G is a homomorphism,
π, from G into the group U (Hπ) of unitary operators on some Hilbert space Hπ.

The weak and strong operator topologies are equivalent on U (Hπ) .
Proof: Let {Tα} be a net in U (Hπ) which converges weakly to T. For any
u ∈ Hπ,

∥ (Tα − T )u∥2 = ∥Tαu∥2 + ∥Tu∥2 − 2Re⟨Tαu, Tu⟩

= 2∥u∥2 − 2Re⟨Tαu, Tu⟩

This converges to 2∥u∥2 − 2∥Tu∥2 = 0 with α.
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Unitary Representations

If M is a closed subset of Hπ such that π (x)M ⊂ M for all x ∈ G, then we say that
M is invariant. We say that π is irreducible if it’s only invariant subspaces are {0}
and Hπ.

Proposition

If G is Abelian, then every irreducible representation of G is one-dimensional.

Gelfand-Raikov

If G is any locally compact group, the irreducible unitary representations of G
separate points on G. That is, if x and y are distinct points of G, there is an
irreducible representation π such that π (x) ̸= π (y) .

Gelfand-Raikov guarantees that we have an irreducible unitary representations of G
other than the trivial one (π (x) = I.)
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The Dual Group

By the previous proposition, when π is irreducible, Hπ may be taken to be C. Then
π (x) (z) is a unitary operator on C. That is, it has to be multiplication by an
element of the unit circle. So we have π (x) (z) = ξ (x) z where ξ is a continuous
homomorphism from G into the torus, T.

Such homomorphisms are called the
unitary characters of G.

Definition

The dual group of a topological group, G, is the set of all unitary characters of G. It
is denoted Ĝ.

The dual group plays an important role in defining the Fourier transform. As such,
to reflect the typical Fourier transform, we use the following notation:

⟨x, ξ⟩ = ξ (x) .
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Examples

R̂ ∼= R with the following familiar definition, ⟨x, ξ⟩ = e2πiξx.

T̂ ∼= Z with ⟨α, n⟩ = αn.

Ẑ ∼= T with ⟨n, α⟩ = αn.

Ẑ/kZ ∼= Z/kZ with ⟨m,n⟩ = e2πimn/k.
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Example: The p-adic numbers

Qp

Let p be a prime and r a rational number. Then there is an m ∈ Z with r = pmq,
where q is a rational number whose numerator and denominator are not divisible by
p. This representation of r is unique. The p-adic norm of r is defined as |r|p = p−m.
The field of p-adic numbers is the completion (in terms of Cauchy sequences) of Q
with the metric induced by the p-adic norm. We denote it Qp

If m ∈ Z and cj ∈ {0, 1, . . . , p− 1} for j ≥ m, then
∑∞

m cjp
j converges in Qp.

Additionally, every p-adic number can be represented by such a series.

We want to compute Q̂p. Let ξ1 be a character of Qp. Then define

⟨
∞∑
−∞

cjp
j , ξ1⟩ = exp

(
2πi

−1∑
−∞

cjp
j

)

It is easily checked that ξ1 is a unitary character whose kernel is Zp. Define ξy by

⟨x, ξy⟩ = ⟨xy, ξ1⟩. Then the map y → ξy is an isomorphism from Qp to Q̂p.
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The Fourier Transform

We first associate to ξ ∈ Ĝ the functional

f → ξ (f) =

∫
⟨x, ξ⟩f (x) dx.

This gives us the Fourier transform, F : L1 (G) → C
(
Ĝ
)
, defined by

Ff (ξ) = f̂ (ξ) =

∫
⟨x, ξ⟩f (x) dx.

Hausdorff-Young Inequality:

Suppose 1 ≤ p ≤ 2 and 1
p
+ 1

q
= 1. If f ∈ Lp (G) and f̂ ∈ Lq

(
Ĝ
)
then ∥f̂∥q ≤ ∥f∥p

9 / 10



The Fourier Transform

We first associate to ξ ∈ Ĝ the functional
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Pontryagin Duality

The essence of Pontryagin duality is this, the elements of G are also unitary
characters on Ĝ. That is all topological groups are reflexive.

In precise symbols, for
each x in G, Φ(x) , defined by ⟨ξ,Φ(x)⟩ = ⟨x, ξ⟩, is a unitary character of Ĝ.

Pontryagin Duality

The map Φ : G → ̂̂
G defined as above is an isomorphism of topological groups.

The Fourier Inversion Theorem

If f ∈ L1 (G) and f̂ ∈ L1

(
Ĝ
)
then f (x) =

(
f̂
)̂ (

x−1
)
for almost every x; that is,

f (x) =

∫
⟨x, ξ⟩f̂ (ξ) dξ for a.e. x.

If f is continuous, then this holds for every x.
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